Enhanced Mixtures of Part Model for Human Pose Estimation

نویسندگان

  • Wenjuan Gong
  • Yongzhen Huang
  • Jordi Gonzàlez
  • Liang Wang
چکیده

Mixture of parts model has been successfully applied to 2D human pose estimation problem either as explicitly trained body part model or as latent variables for the whole human body model. Mixture of parts model usually utilize tree structure for representing relations between body parts. Tree structures facilitate training and referencing of the model but could not deal with double counting problems, which hinder its applications in 3D pose estimation. While most of work targeted to solve these problems tend to modify the tree models or the optimization target. We incorporate other cues from input features. For example, in surveillance environments, human silhouettes can be extracted relative easily although not flawlessly. In this condition, we can combine extracted human blobs with histogram of gradient feature, which is commonly used in mixture of parts model for training body part templates. The method can be easily extend to other candidate features under our generalized framework. We show 2D body part detection results on a public available dataset: HumanEva dataset. Furthermore, a 2D to 3D pose estimator is trained with Gaussian process regression model and 2D body part detections from the proposed method is fed to the estimator, thus 3D poses are predictable given new 2D body part detections. We also show results of 3D pose estimation on HumanEva dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما

Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...

متن کامل

استفاده از برآورد حالت‌های پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با داده‌های کینکت

Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...

متن کامل

A SIMPLE MODEL FOR THE ESTIMATION OF DIELECTRIC CONSTANTS OF BINARY SOLVENT MIXTURES

A simple and reliable method for quick estimation of the dielectric constant of a binary solvent mixture is proposed. The validity of the proposed method has been tested for a broad range of binary solvent mixtures

متن کامل

Multi-view Pictorial Structures for 3D Human Pose Estimation

Pictorial structure models are the de facto standard for 2D human pose estimation. Numerous refinements and improvements have been proposed such as discriminatively trained body part detectors, flexible body models, and local and global mixtures. While these techniques allow to achieve state-of-the-art performance for 2D pose estimation, they have not yet been extended to enable pose estimation...

متن کامل

Dynamical Pose Filtering for Mixtures of Gaussian Processes

In this paper we present a method for performing discriminative human pose estimation using a mixture of Gaussian Processes appearance model to map directly from the image features to the multi-model pose distribution. In order to obtain a pose estimate for a sequence of frames, we introduce a dynamic programming algorithm for inferring a smooth pose sequence from the multi-model distribution g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1501.05382  شماره 

صفحات  -

تاریخ انتشار 2015